Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
1.
Nature ; 606(7913): 375-381, 2022 06.
Article in English | MEDLINE | ID: covidwho-1890198

ABSTRACT

Antiretroviral therapy is highly effective in suppressing human immunodeficiency virus (HIV)1. However, eradication of the virus in individuals with HIV has not been possible to date2. Given that HIV suppression requires life-long antiretroviral therapy, predominantly on a daily basis, there is a need to develop clinically effective alternatives that use long-acting antiviral agents to inhibit viral replication3. Here we report the results of a two-component clinical trial involving the passive transfer of two HIV-specific broadly neutralizing monoclonal antibodies, 3BNC117 and 10-1074. The first component was a randomized, double-blind, placebo-controlled trial that enrolled participants who initiated antiretroviral therapy during the acute/early phase of HIV infection. The second component was an open-label single-arm trial that enrolled individuals with viraemic control who were naive to antiretroviral therapy. Up to 8 infusions of 3BNC117 and 10-1074, administered over a period of 24 weeks, were well tolerated without any serious adverse events related to the infusions. Compared with the placebo, the combination broadly neutralizing monoclonal antibodies maintained complete suppression of plasma viraemia (for up to 43 weeks) after analytical treatment interruption, provided that no antibody-resistant HIV was detected at the baseline in the study participants. Similarly, potent HIV suppression was seen in the antiretroviral-therapy-naive study participants with viraemia carrying sensitive virus at the baseline. Our data demonstrate that combination therapy with broadly neutralizing monoclonal antibodies can provide long-term virological suppression without antiretroviral therapy in individuals with HIV, and our experience offers guidance for future clinical trials involving next-generation antibodies with long half-lives.


Subject(s)
Anti-HIV Agents , Antibodies, Neutralizing , HIV Antibodies , HIV Infections , HIV-1 , Anti-HIV Agents/administration & dosage , Anti-HIV Agents/adverse effects , Anti-HIV Agents/immunology , Anti-HIV Agents/therapeutic use , Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal/adverse effects , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/therapeutic use , Antibodies, Neutralizing/administration & dosage , Antibodies, Neutralizing/adverse effects , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/therapeutic use , Broadly Neutralizing Antibodies/administration & dosage , Broadly Neutralizing Antibodies/adverse effects , Broadly Neutralizing Antibodies/immunology , Broadly Neutralizing Antibodies/therapeutic use , Double-Blind Method , HIV Antibodies/administration & dosage , HIV Antibodies/adverse effects , HIV Antibodies/immunology , HIV Antibodies/therapeutic use , HIV Infections/drug therapy , HIV Infections/immunology , HIV Infections/virology , HIV-1/drug effects , HIV-1/immunology , HIV-1/isolation & purification , Humans , Viral Load/drug effects , Viremia/drug therapy , Viremia/immunology , Viremia/virology
2.
N Engl J Med ; 386(23): 2188-2200, 2022 06 09.
Article in English | MEDLINE | ID: covidwho-1805743

ABSTRACT

BACKGROUND: The monoclonal-antibody combination AZD7442 is composed of tixagevimab and cilgavimab, two neutralizing antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that have an extended half-life and have been shown to have prophylactic and therapeutic effects in animal models. Pharmacokinetic data in humans indicate that AZD7442 has an extended half-life of approximately 90 days. METHODS: In an ongoing phase 3 trial, we enrolled adults (≥18 years of age) who had an increased risk of an inadequate response to vaccination against coronavirus disease 2019 (Covid-19), an increased risk of exposure to SARS-CoV-2, or both. Participants were randomly assigned in a 2:1 ratio to receive a single dose (two consecutive intramuscular injections, one containing tixagevimab and the other containing cilgavimab) of either 300 mg of AZD7442 or saline placebo, and they were followed for up to 183 days in the primary analysis. The primary safety end point was the incidence of adverse events after a single dose of AZD7442. The primary efficacy end point was symptomatic Covid-19 (SARS-CoV-2 infection confirmed by means of reverse-transcriptase-polymerase-chain-reaction assay) occurring after administration of AZD7442 or placebo and on or before day 183. RESULTS: A total of 5197 participants underwent randomization and received one dose of AZD7442 or placebo (3460 in the AZD7442 group and 1737 in the placebo group). The primary analysis was conducted after 30% of the participants had become aware of their randomized assignment. In total, 1221 of 3461 participants (35.3%) in the AZD7442 group and 593 of 1736 participants (34.2%) in the placebo group reported having at least one adverse event, most of which were mild or moderate in severity. Symptomatic Covid-19 occurred in 8 of 3441 participants (0.2%) in the AZD7442 group and in 17 of 1731 participants (1.0%) in the placebo group (relative risk reduction, 76.7%; 95% confidence interval [CI], 46.0 to 90.0; P<0.001); extended follow-up at a median of 6 months showed a relative risk reduction of 82.8% (95% CI, 65.8 to 91.4). Five cases of severe or critical Covid-19 and two Covid-19-related deaths occurred, all in the placebo group. CONCLUSIONS: A single dose of AZD7442 had efficacy for the prevention of Covid-19, without evident safety concerns. (Funded by AstraZeneca and the U.S. government; PROVENT ClinicalTrials.gov number, NCT04625725.).


Subject(s)
Antiviral Agents , COVID-19 , Adult , Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal/therapeutic use , Antibodies, Neutralizing/administration & dosage , Antibodies, Neutralizing/therapeutic use , Antiviral Agents/administration & dosage , Antiviral Agents/therapeutic use , COVID-19/prevention & control , Double-Blind Method , Drug Combinations , Humans , Injections, Intramuscular , SARS-CoV-2
3.
JAMA ; 327(13): 1236-1246, 2022 04 05.
Article in English | MEDLINE | ID: covidwho-1801955

ABSTRACT

Importance: Older patients and those with comorbidities who are infected with SARS-CoV-2 may be at increased risk of hospitalization and death. Sotrovimab is a neutralizing antibody for the treatment of high-risk patients to prevent COVID-19 progression. Objective: To evaluate the efficacy and adverse events of sotrovimab in preventing progression of mild to moderate COVID-19 to severe disease. Design, Setting, and Participants: Randomized clinical trial including 1057 nonhospitalized patients with symptomatic, mild to moderate COVID-19 and at least 1 risk factor for progression conducted at 57 sites in Brazil, Canada, Peru, Spain, and the US from August 27, 2020, through March 11, 2021; follow-up data were collected through April 8, 2021. Interventions: Patients were randomized (1:1) to an intravenous infusion with 500 mg of sotrovimab (n = 528) or placebo (n = 529). Main Outcomes and Measures: The primary outcome was the proportion of patients with COVID-19 progression through day 29 (all-cause hospitalization lasting >24 hours for acute illness management or death); 5 secondary outcomes were tested in hierarchal order, including a composite of all-cause emergency department (ED) visit, hospitalization of any duration for acute illness management, or death through day 29 and progression to severe or critical respiratory COVID-19 requiring supplemental oxygen or mechanical ventilation. Results: Enrollment was stopped early for efficacy at the prespecified interim analysis. Among 1057 patients randomized (median age, 53 years [IQR, 42-62], 20% were ≥65 years of age, and 65% Latinx), the median duration of follow-up was 103 days for sotrovimab and 102 days for placebo. All-cause hospitalization lasting longer than 24 hours or death was significantly reduced with sotrovimab (6/528 [1%]) vs placebo (30/529 [6%]) (adjusted relative risk [RR], 0.21 [95% CI, 0.09 to 0.50]; absolute difference, -4.53% [95% CI, -6.70% to -2.37%]; P < .001). Four of the 5 secondary outcomes were statistically significant in favor of sotrovimab, including reduced ED visit, hospitalization, or death (13/528 [2%] for sotrovimab vs 39/529 [7%] for placebo; adjusted RR, 0.34 [95% CI, 0.19 to 0.63]; absolute difference, -4.91% [95% CI, -7.50% to -2.32%]; P < .001) and progression to severe or critical respiratory COVID-19 (7/528 [1%] for sotrovimab vs 28/529 [5%] for placebo; adjusted RR, 0.26 [95% CI, 0.12 to 0.59]; absolute difference, -3.97% [95% CI, -6.11% to -1.82%]; P = .002). Adverse events were infrequent and similar between treatment groups (22% for sotrovimab vs 23% for placebo); the most common events were diarrhea with sotrovimab (n = 8; 2%) and COVID-19 pneumonia with placebo (n = 22; 4%). Conclusions and Relevance: Among nonhospitalized patients with mild to moderate COVID-19 and at risk of disease progression, a single intravenous dose of sotrovimab, compared with placebo, significantly reduced the risk of a composite end point of all-cause hospitalization or death through day 29. The findings support sotrovimab as a treatment option for nonhospitalized, high-risk patients with mild to moderate COVID-19, although efficacy against SARS-CoV-2 variants that have emerged since the study was completed is unknown. Trial Registration: ClinicalTrials.gov Identifier: NCT04545060.


Subject(s)
Antiviral Agents , COVID-19 Drug Treatment , COVID-19 , SARS-CoV-2 , Acute Disease , Adult , Aged , Antibodies, Monoclonal, Humanized/administration & dosage , Antibodies, Monoclonal, Humanized/therapeutic use , Antibodies, Neutralizing/administration & dosage , Antibodies, Neutralizing/therapeutic use , Antiviral Agents/administration & dosage , Antiviral Agents/therapeutic use , COVID-19/mortality , Disease Progression , Hospitalization , Humans , Infusions, Intravenous , Middle Aged , Respiration, Artificial , Treatment Outcome
4.
Lancet ; 398(10296): 213-222, 2021 07 17.
Article in English | MEDLINE | ID: covidwho-1598580

ABSTRACT

BACKGROUND: CoronaVac, an inactivated whole-virion SARS-CoV-2 vaccine, has been shown to be well tolerated with a good safety profile in individuals aged 18 years and older in phase 1/2 trials, and provided a good humoral response against SARS-CoV-2. We present the interim efficacy and safety results of a phase 3 clinical trial of CoronaVac in Turkey. METHODS: This was a double-blind, randomised, placebo-controlled phase 3 trial. Volunteers aged 18-59 years with no history of COVID-19 and with negative PCR and antibody test results for SARS-CoV-2 were enrolled at 24 centres in Turkey. Exclusion criteria included (but were not limited to) immunosuppressive therapy (including steroids) within the past 6 months, bleeding disorders, asplenia, and receipt of any blood products or immunoglobulins within the past 3 months. The K1 cohort consisted of health-care workers (randomised in a 1:1 ratio), and individuals other than health-care workers were also recruited into the K2 cohort (randomised in a 2:1 ratio) using an interactive web response system. The study vaccine was 3 µg inactivated SARS-CoV-2 virion adsorbed to aluminium hydroxide in a 0·5 mL aqueous suspension. Participants received either vaccine or placebo (consisting of all vaccine components except inactivated virus) intramuscularly on days 0 and 14. The primary efficacy outcome was the prevention of PCR-confirmed symptomatic COVID-19 at least 14 days after the second dose in the per protocol population. Safety analyses were done in the intention-to-treat population. This study is registered with ClinicalTrials.gov (NCT04582344) and is active but no longer recruiting. FINDINGS: Among 11 303 volunteers screened between Sept 14, 2020, and Jan 5, 2021, 10 218 were randomly allocated. After exclusion of four participants from the vaccine group because of protocol deviations, the intention-to-treat group consisted of 10 214 participants (6646 [65·1%] in the vaccine group and 3568 [34·9%] in the placebo group) and the per protocol group consisted of 10 029 participants (6559 [65·4%] and 3470 [34·6%]) who received two doses of vaccine or placebo. During a median follow-up period of 43 days (IQR 36-48), nine cases of PCR-confirmed symptomatic COVID-19 were reported in the vaccine group (31·7 cases [14·6-59·3] per 1000 person-years) and 32 cases were reported in the placebo group (192·3 cases [135·7-261·1] per 1000 person-years) 14 days or more after the second dose, yielding a vaccine efficacy of 83·5% (95% CI 65·4-92·1; p<0·0001). The frequencies of any adverse events were 1259 (18·9%) in the vaccine group and 603 (16·9%) in the placebo group (p=0·0108) with no fatalities or grade 4 adverse events. The most common systemic adverse event was fatigue (546 [8·2%] participants in the vaccine group and 248 [7·0%] the placebo group, p=0·0228). Injection-site pain was the most frequent local adverse event (157 [2·4%] in the vaccine group and 40 [1·1%] in the placebo group, p<0·0001). INTERPRETATION: CoronaVac has high efficacy against PCR-confirmed symptomatic COVID-19 with a good safety and tolerability profile. FUNDING: Turkish Health Institutes Association.


Subject(s)
Antibodies, Neutralizing , COVID-19 Vaccines/therapeutic use , COVID-19/immunology , SARS-CoV-2/immunology , Antibodies, Neutralizing/administration & dosage , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , COVID-19/prevention & control , Double-Blind Method , Health Personnel/statistics & numerical data , Humans , Male , Middle Aged , Turkey , Vaccination , Vaccines, Inactivated/administration & dosage , Vaccines, Inactivated/immunology , Virion/immunology
5.
Cell Rep ; 37(12): 110126, 2021 12 21.
Article in English | MEDLINE | ID: covidwho-1556413

ABSTRACT

Previous studies have shown that the high mortality caused by viruses such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza virus primarily results from complications of a cytokine storm. Therefore, it is critical to identify the key factors participating in the cytokine storm. Here we demonstrate that interferon-induced protein 35 (IFP35) plays an important role in the cytokine storm induced by SARS-CoV-2 and influenza virus infection. We find that the levels of serum IFP35 in individuals with SARS-CoV-2 correlates with severity of the syndrome. Using mouse model and cell assays, we show that IFP35 is released by lung epithelial cells and macrophages after SARS-CoV-2 or influenza virus infection. In addition, we show that administration of neutralizing antibodies against IFP35 considerably reduces lung injury and, thus, the mortality rate of mice exposed to viral infection. Our findings suggest that IFP35 serves as a biomarker and as a therapeutic target in virus-induced syndromes.


Subject(s)
COVID-19 Drug Treatment , COVID-19/blood , Influenza, Human/blood , Influenza, Human/drug therapy , Intracellular Signaling Peptides and Proteins/blood , Animals , Antibodies, Neutralizing/administration & dosage , Biomarkers/blood , COVID-19/pathology , COVID-19/physiopathology , Disease Models, Animal , Humans , Inflammation/metabolism , Influenza, Human/pathology , Lung/metabolism , Lung/pathology , Macrophages/metabolism , Macrophages/pathology , Mice , Mice, Inbred C57BL , Mice, Knockout , Patient Acuity , SARS-CoV-2/physiology
6.
JCI Insight ; 7(2)2022 01 25.
Article in English | MEDLINE | ID: covidwho-1546626

ABSTRACT

BACKGROUNDWhile most children who contract COVID-19 experience mild disease, high-risk children with underlying conditions may develop severe disease, requiring interventions. Kinetics of antibodies transferred via COVID-19 convalescent plasma early in disease have not been characterized.METHODSIn this study, high-risk children were prospectively enrolled to receive high-titer COVID-19 convalescent plasma (>1:320 anti-spike IgG; Euroimmun). Passive transfer of antibodies and endogenous antibody production were serially evaluated for up to 2 months after transfusion. Commercial and research ELISA assays, virus neutralization assays, high-throughput phage-display assay utilizing a coronavirus epitope library, and pharmacokinetic analyses were performed.RESULTSFourteen high-risk children (median age, 7.5 years) received high-titer COVID-19 convalescent plasma, 9 children within 5 days (range, 2-7 days) of symptom onset and 5 children within 4 days (range, 3-5 days) after exposure to SARS-CoV-2. There were no serious adverse events related to transfusion. Antibodies against SARS-CoV-2 were transferred from the donor to the recipient, but antibody titers declined by 14-21 days, with a 15.1-day half-life for spike protein IgG. Donor plasma had significant neutralization capacity, which was transferred to the recipient. However, as early as 30 minutes after transfusion, recipient plasma neutralization titers were 6.2% (range, 5.9%-6.7%) of donor titers.CONCLUSIONConvalescent plasma transfused to high-risk children appears to be safe, with expected antibody kinetics, regardless of weight or age. However, current use of convalescent plasma in high-risk children achieves neutralizing capacity, which may protect against severe disease but is unlikely to provide lasting protection.Trial registrationClinicalTrials.gov NCT04377672.FundingThe state of Maryland, Bloomberg Philanthropies, and the NIH (grants R01-AI153349, R01-AI145435-A1, K08-AI139371-A1, and T32-AI052071).


Subject(s)
Antibodies, Neutralizing/administration & dosage , Antibodies, Viral/administration & dosage , COVID-19/therapy , Pharmacokinetics , SARS-CoV-2/metabolism , Adolescent , COVID-19/blood , Child , Child, Preschool , Female , Humans , Immunization, Passive , Infant , Male , Risk Factors , COVID-19 Serotherapy
7.
Clin Pharmacol Ther ; 111(3): 572-578, 2022 03.
Article in English | MEDLINE | ID: covidwho-1527428

ABSTRACT

Leveraging limited clinical and nonclinical data through modeling approaches facilitates new drug development and regulatory decision making amid the coronavirus disease 2019 (COVID-19) pandemic. Model-informed drug development (MIDD) is an essential tool to integrate those data and generate evidence to (i) provide support for effectiveness in repurposed or new compounds to combat COVID-19 and dose selection when clinical data are lacking; (ii) assess efficacy under practical situations such as dose reduction to overcome supply issues or emergence of resistant variant strains; (iii) demonstrate applicability of MIDD for full extrapolation to adolescents and sometimes to young pediatric patients; and (iv) evaluate the appropriateness for prolonging a dosing interval to reduce the frequency of hospital visits during the pandemic. Ongoing research activities of MIDD reflect our continuous effort and commitment in bridging knowledge gaps that leads to the availability of effective treatments through innovation. Case examples are presented to illustrate how MIDD has been used in various stages of drug development and has the potential to inform regulatory decision making.


Subject(s)
Antiviral Agents/pharmacology , COVID-19 Drug Treatment , COVID-19 , Drug Development/methods , Models, Biological , Antibodies, Neutralizing/administration & dosage , Antibodies, Neutralizing/pharmacology , COVID-19/epidemiology , Drug Approval , Drug Repositioning , Humans , Pharmacology, Clinical/methods , SARS-CoV-2/immunology
8.
Adv Sci (Weinh) ; 9(2): e2103240, 2022 01.
Article in English | MEDLINE | ID: covidwho-1508603

ABSTRACT

The outbreak of 2019 coronavirus disease (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has resulted in a global pandemic. Despite intensive research, the current treatment options show limited curative efficacies. Here the authors report a strategy incorporating neutralizing antibodies conjugated to the surface of a photothermal nanoparticle (NP) to capture and inactivate SARS-CoV-2. The NP is comprised of a semiconducting polymer core and a biocompatible polyethylene glycol surface decorated with high-affinity neutralizing antibodies. The multifunctional NP efficiently captures SARS-CoV-2 pseudovirions and completely blocks viral infection to host cells in vitro through the surface neutralizing antibodies. In addition to virus capture and blocking function, the NP also possesses photothermal function to generate heat following irradiation for inactivation of virus. Importantly, the NPs described herein significantly outperform neutralizing antibodies at treating authentic SARS-CoV-2 infection in vivo. This multifunctional NP provides a flexible platform that can be readily adapted to other SARS-CoV-2 antibodies and extended to novel therapeutic proteins, thus it is expected to provide a broad range of protection against original SARS-CoV-2 and its variants.


Subject(s)
Antibodies, Neutralizing/administration & dosage , Antibodies, Viral/administration & dosage , COVID-19/therapy , Immunoconjugates/administration & dosage , Nanoparticles , SARS-CoV-2/immunology , Angiotensin-Converting Enzyme 2/physiology , Animals , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/immunology , Antigen-Antibody Reactions , COVID-19/immunology , COVID-19/virology , Drug Evaluation, Preclinical , Hot Temperature , Humans , Immunoconjugates/immunology , Immunoconjugates/therapeutic use , Light , Mice , Nanoparticles/therapeutic use , Phosphatidylethanolamines , Polyethylene Glycols , Polymers , Receptors, Virus/physiology , Semiconductors , Spike Glycoprotein, Coronavirus/immunology , Thiadiazoles , Virus Inactivation
9.
Nat Commun ; 12(1): 6304, 2021 11 02.
Article in English | MEDLINE | ID: covidwho-1500462

ABSTRACT

Accumulating mutations in the SARS-CoV-2 Spike (S) protein can increase the possibility of immune escape, challenging the present COVID-19 prophylaxis and clinical interventions. Here, 3 receptor binding domain (RBD) specific monoclonal antibodies (mAbs), 58G6, 510A5 and 13G9, with high neutralizing potency blocking authentic SARS-CoV-2 virus display remarkable efficacy against authentic B.1.351 virus. Surprisingly, structural analysis has revealed that 58G6 and 13G9 both recognize the steric region S470-495 on the RBD, overlapping the E484K mutation presented in B.1.351. Also, 58G6 directly binds to another region S450-458 in the RBD. Significantly, 58G6 and 510A5 both demonstrate prophylactic efficacy against authentic SARS-CoV-2 and B.1.351 viruses in the transgenic mice expressing human ACE2 (hACE2), protecting weight loss and reducing virus loads. Together, we have evidenced 2 potent neutralizing Abs with unique mechanism targeting authentic SARS-CoV-2 mutants, which can be promising candidates to fulfill the urgent needs for the prolonged COVID-19 pandemic.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/prevention & control , SARS-CoV-2/immunology , Animals , Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/administration & dosage , Antibodies, Neutralizing/chemistry , Antibodies, Viral/administration & dosage , Antibodies, Viral/chemistry , Binding Sites , COVID-19/pathology , COVID-19/virology , Epitopes , Humans , Mice , Mice, Transgenic , Mutation , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Viral Load/drug effects , Weight Loss/drug effects
10.
Front Immunol ; 12: 689065, 2021.
Article in English | MEDLINE | ID: covidwho-1502324

ABSTRACT

Coronavirus disease 2019 (COVID-19) is an acute respiratory infectious disease caused by infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The US FDA has approved several therapeutics and vaccines worldwide through the emergency use authorization in response to the rapid spread of COVID-19. Nevertheless, the efficacies of these treatments are being challenged by viral escape mutations. There is an urgent need to develop effective treatments protecting against SARS-CoV-2 infection and to establish a stable effect-screening model to test potential drugs. Polyclonal antibodies (pAbs) have an intrinsic advantage in such developments because they can target rapidly mutating viral strains as a result of the complexity of their binding epitopes. In this study, we generated anti-receptor-binding domain (anti-RBD) pAbs from rabbit serum and tested their safety and efficacy in response to SARS-CoV-2 infection both in vivo and ex vivo. Primary human bronchial epithelial two-dimensional (2-D) organoids were cultured and differentiated to a mature morphology and subsequently employed for SARS-CoV-2 infection and drug screening. The pAbs protected the airway organoids from viral infection and tissue damage. Potential side effects were tested in mouse models for both inhalation and vein injection. The pAbs displayed effective viral neutralization effects without significant side effects. Thus, the use of animal immune serum-derived pAbs might be a potential therapy for protection against SARS-CoV-2 infection, with the strategy developed to produce these pAbs providing new insight into the treatment of respiratory tract infections, especially for infections with viruses undergoing rapid mutation.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Animals , Antibodies, Neutralizing/administration & dosage , Antibodies, Viral/administration & dosage , Binding Sites , Bronchi/cytology , COVID-19/genetics , COVID-19/therapy , Epithelial Cells , Gene Expression Profiling , Humans , Immunization, Passive , Mice , Mutation , Neutralization Tests , Organoids , Rabbits , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , COVID-19 Serotherapy
11.
Clin Pharmacol Ther ; 111(3): 595-604, 2022 03.
Article in English | MEDLINE | ID: covidwho-1479393

ABSTRACT

Neutralizing monoclonal antibodies (mAb), novel therapeutics for the treatment of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2), have been urgently researched from the start of the pandemic. The selection of the optimal mAb candidate and therapeutic dose were expedited using open-access in silico models. The maximally effective therapeutic mAb dose was determined through two approaches; both expanded on innovative, open-science initiatives. A physiologically-based pharmacokinetic (PBPK) model, incorporating physicochemical properties predictive of mAb clearance and tissue distribution, was used to estimate mAb exposure that maintained concentrations above 90% inhibitory concentration of in vitro neutralization in lung tissue for up to 4 weeks in 90% of patients. To achieve fastest viral clearance following onset of symptoms, a longitudinal SARS-CoV-2 viral dynamic model was applied to estimate viral clearance as a function of drug concentration and dose. The PBPK model-based approach suggested that a clinical dose between 175 and 500 mg of bamlanivimab would maintain target mAb concentrations in the lung tissue over 28 days in 90% of patients. The viral dynamic model suggested a 700 mg dose would achieve maximum viral elimination. Taken together, the first-in-human trial (NCT04411628) conservatively proceeded with a starting therapeutic dose of 700 mg and escalated to higher doses to evaluate the upper limit of safety and tolerability. Availability of open-access codes and application of novel in silico model-based approaches supported the selection of bamlanivimab and identified the lowest dose evaluated in this study that was expected to result in the maximum therapeutic effect before the first-in-human clinical trial.


Subject(s)
Antibodies, Monoclonal, Humanized/administration & dosage , Antibodies, Monoclonal/administration & dosage , Antibodies, Neutralizing/administration & dosage , Antiviral Agents/administration & dosage , Models, Biological , SARS-CoV-2/drug effects , Antibodies, Monoclonal/pharmacokinetics , Antiviral Agents/pharmacokinetics , Clinical Trials as Topic , Computer Simulation , Dose-Response Relationship, Drug , Dose-Response Relationship, Immunologic , Humans , SARS-CoV-2/immunology
12.
Nat Commun ; 12(1): 6097, 2021 10 20.
Article in English | MEDLINE | ID: covidwho-1475295

ABSTRACT

Effective treatments against Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2) are urgently needed. Monoclonal antibodies have shown promising results in patients. Here, we evaluate the in vivo prophylactic and therapeutic effect of COVA1-18, a neutralizing antibody highly potent against the B.1.1.7 isolate. In both prophylactic and therapeutic settings, SARS-CoV-2 remains undetectable in the lungs of treated hACE2 mice. Therapeutic treatment also causes a reduction in viral loads in the lungs of Syrian hamsters. When administered at 10 mg kg-1 one day prior to a high dose SARS-CoV-2 challenge in cynomolgus macaques, COVA1-18 shows very strong antiviral activity in the upper respiratory compartments. Using a mathematical model, we estimate that COVA1-18 reduces viral infectivity by more than 95% in these compartments, preventing lymphopenia and extensive lung lesions. Our findings demonstrate that COVA1-18 has a strong antiviral activity in three preclinical models and could be a valuable candidate for further clinical evaluation.


Subject(s)
Antibodies, Monoclonal/administration & dosage , Antibodies, Neutralizing/administration & dosage , Antiviral Agents/administration & dosage , COVID-19 Drug Treatment , SARS-CoV-2/immunology , Angiotensin-Converting Enzyme 2/genetics , Animals , Antibodies, Monoclonal/pharmacokinetics , Antiviral Agents/pharmacokinetics , COVID-19/blood , COVID-19/immunology , COVID-19/virology , Disease Models, Animal , Drug Evaluation, Preclinical , Female , Humans , Lung/metabolism , Lung/virology , Macaca fascicularis , Male , Mesocricetus , Mice , Mice, Transgenic , SARS-CoV-2/isolation & purification , Tissue Distribution , Viral Load
13.
J Clin Invest ; 131(20)2021 10 15.
Article in English | MEDLINE | ID: covidwho-1470551

ABSTRACT

BACKGROUNDCOVID-19 convalescent plasma (CCP) has been considered a treatment option for COVID-19. This trial assessed the efficacy of a neutralizing antibody containing high-dose CCP in hospitalized adults with COVID-19 requiring respiratory support or intensive care treatment.METHODSPatients (n = 105) were randomized 1:1 to either receive standard treatment and 3 units of CCP or standard treatment alone. Control group patients with progress on day 14 could cross over to the CCP group. The primary outcome was a dichotomous composite outcome of survival and no longer fulfilling criteria for severe COVID-19 on day 21.ResultsThe primary outcome occurred in 43.4% of patients in the CCP group and 32.7% in the control group (P = 0.32). The median time to clinical improvement was 26 days in the CCP group and 66 days in the control group (P = 0.27). The median time to discharge from the hospital was 31 days in the CCP group and 51 days in the control group (P = 0.24). In the subgroup that received a higher cumulative amount of neutralizing antibodies, the primary outcome occurred in 56.0% of the patients (vs. 32.1%), with significantly shorter intervals to clinical improvement (20 vs. 66 days, P < 0.05) and to hospital discharge (21 vs. 51 days, P = 0.03) and better survival (day-60 probability of survival 91.6% vs. 68.1%, P = 0.02) in comparison with the control group.ConclusionCCP added to standard treatment was not associated with a significant improvement in the primary and secondary outcomes. A predefined subgroup analysis showed a significant benefit of CCP among patients who received a larger amount of neutralizing antibodies.Trial registrationClinicalTrials.gov NCT04433910.FundingBundesministerium für Gesundheit (German Federal Ministry of Health): ZMVI1-2520COR802.


Subject(s)
COVID-19/therapy , SARS-CoV-2 , Aged , Antibodies, Neutralizing/administration & dosage , Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/administration & dosage , Antibodies, Viral/therapeutic use , COVID-19/immunology , COVID-19/physiopathology , Combined Modality Therapy , Cross-Over Studies , Female , Humans , Immunization, Passive/adverse effects , Immunization, Passive/methods , Kaplan-Meier Estimate , Male , Middle Aged , Pandemics , Prospective Studies , SARS-CoV-2/immunology , Severity of Illness Index , Treatment Outcome , COVID-19 Serotherapy
14.
N Engl J Med ; 385(23): e81, 2021 12 02.
Article in English | MEDLINE | ID: covidwho-1442848

ABSTRACT

BACKGROUND: In the phase 1-2 portion of an adaptive trial, REGEN-COV, a combination of the monoclonal antibodies casirivimab and imdevimab, reduced the viral load and number of medical visits in patients with coronavirus disease 2019 (Covid-19). REGEN-COV has activity in vitro against current severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern. METHODS: In the phase 3 portion of an adaptive trial, we randomly assigned outpatients with Covid-19 and risk factors for severe disease to receive various doses of intravenous REGEN-COV or placebo. Patients were followed through day 29. A prespecified hierarchical analysis was used to assess the end points of hospitalization or death and the time to resolution of symptoms. Safety was also evaluated. RESULTS: Covid-19-related hospitalization or death from any cause occurred in 18 of 1355 patients in the REGEN-COV 2400-mg group (1.3%) and in 62 of 1341 patients in the placebo group who underwent randomization concurrently (4.6%) (relative risk reduction [1 minus the relative risk], 71.3%; P<0.001); these outcomes occurred in 7 of 736 patients in the REGEN-COV 1200-mg group (1.0%) and in 24 of 748 patients in the placebo group who underwent randomization concurrently (3.2%) (relative risk reduction, 70.4%; P = 0.002). The median time to resolution of symptoms was 4 days shorter with each REGEN-COV dose than with placebo (10 days vs. 14 days; P<0.001 for both comparisons). REGEN-COV was efficacious across various subgroups, including patients who were SARS-CoV-2 serum antibody-positive at baseline. Both REGEN-COV doses reduced viral load faster than placebo; the least-squares mean difference in viral load from baseline through day 7 was -0.71 log10 copies per milliliter (95% confidence interval [CI], -0.90 to -0.53) in the 1200-mg group and -0.86 log10 copies per milliliter (95% CI, -1.00 to -0.72) in the 2400-mg group. Serious adverse events occurred more frequently in the placebo group (4.0%) than in the 1200-mg group (1.1%) and the 2400-mg group (1.3%); infusion-related reactions of grade 2 or higher occurred in less than 0.3% of the patients in all groups. CONCLUSIONS: REGEN-COV reduced the risk of Covid-19-related hospitalization or death from any cause, and it resolved symptoms and reduced the SARS-CoV-2 viral load more rapidly than placebo. (Funded by Regeneron Pharmaceuticals and others; ClinicalTrials.gov number, NCT04425629.).


Subject(s)
Antibodies, Monoclonal, Humanized/administration & dosage , Antibodies, Neutralizing/administration & dosage , Antiviral Agents/administration & dosage , COVID-19 Drug Treatment , Adolescent , Adult , Antibodies, Monoclonal, Humanized/pharmacokinetics , Antibodies, Monoclonal, Humanized/pharmacology , Antibodies, Neutralizing/pharmacology , Antiviral Agents/pharmacokinetics , Antiviral Agents/pharmacology , COVID-19/mortality , Dose-Response Relationship, Drug , Double-Blind Method , Drug Combinations , Female , Hospitalization/statistics & numerical data , Humans , Kaplan-Meier Estimate , Male , Middle Aged , Pregnancy , Pregnancy Complications, Infectious/drug therapy , Proportional Hazards Models , Viral Load/drug effects , Young Adult
15.
Nat Commun ; 12(1): 5469, 2021 09 22.
Article in English | MEDLINE | ID: covidwho-1434103

ABSTRACT

SARS-CoV-2 remains a global threat to human health particularly as escape mutants emerge. There is an unmet need for effective treatments against COVID-19 for which neutralizing single domain antibodies (nanobodies) have significant potential. Their small size and stability mean that nanobodies are compatible with respiratory administration. We report four nanobodies (C5, H3, C1, F2) engineered as homotrimers with pmolar affinity for the receptor binding domain (RBD) of the SARS-CoV-2 spike protein. Crystal structures show C5 and H3 overlap the ACE2 epitope, whilst C1 and F2 bind to a different epitope. Cryo Electron Microscopy shows C5 binding results in an all down arrangement of the Spike protein. C1, H3 and C5 all neutralize the Victoria strain, and the highly transmissible Alpha (B.1.1.7 first identified in Kent, UK) strain and C1 also neutralizes the Beta (B.1.35, first identified in South Africa). Administration of C5-trimer via the respiratory route showed potent therapeutic efficacy in the Syrian hamster model of COVID-19 and separately, effective prophylaxis. The molecule was similarly potent by intraperitoneal injection.


Subject(s)
Antibodies, Neutralizing/pharmacology , COVID-19 Drug Treatment , Single-Domain Antibodies/pharmacology , Spike Glycoprotein, Coronavirus/metabolism , Administration, Intranasal , Animals , Antibodies, Neutralizing/administration & dosage , Antibodies, Neutralizing/genetics , Antibodies, Neutralizing/immunology , Cryoelectron Microscopy , Crystallography, X-Ray , Disease Models, Animal , Dose-Response Relationship, Immunologic , Epitopes/chemistry , Epitopes/metabolism , Female , Male , Mesocricetus , Neutralization Tests , SARS-CoV-2/drug effects , Single-Domain Antibodies/administration & dosage , Single-Domain Antibodies/immunology , Single-Domain Antibodies/metabolism , Spike Glycoprotein, Coronavirus/chemistry
16.
Transplantation ; 106(2): e153-e157, 2022 02 01.
Article in English | MEDLINE | ID: covidwho-1406520

ABSTRACT

BACKGROUND: (COVID-19) has resulted in significant morbidity and mortality in solid organ transplant recipients. In December 2020, at the peak of the Los Angeles outbreak, our center rapidly implemented a protocol to improve outpatient management and provide bamlanivimab or casirivimab-imdevimab [COVID monoclonal antibody (mAb) therapies] to all eligible COVID-19 positive liver and kidney transplant recipients. METHODS: A retrospective review of all abdominal organ transplant recipients who were COVID-19 polymerase chain reaction positive between February 2020 and February 2021 from our center was performed. Patient demographics, COVID-19 treatments, hospitalizations, and survival were reviewed. Patients were considered eligible for COVID mAb therapy if they met outpatient criteria at the time of diagnosis. RESULTS: In the study period, 121 patients in the kidney transplant recipients group (KG) and 105 patients in the liver or combined liver/kidney transplant recipients group (LG) were COVID-19 polymerase chain reaction positive. Hospitalization rates were similar for the KG (45%) versus LG (35%) (P = 0.20), but mortality was higher for the KG (22%) when compared to LG (10%) (P = 0.02). Our programmatic response, including outpatient COVID mAb therapies, reduced hospitalizations (P = 0.01) and deaths (P = 0.01). Ninety-four KG and 87 LG patients were identified as potentially eligible for COVID mAb therapy, and 17 KG and 17 LG patients were treated. COVID mAb therapies reduced hospitalization from 32% to 15% (P = 0.045) and eliminated mortality (13% versus 0%, P = 0.04). CONCLUSIONS: An aggressive approach including outpatient COVID mAb therapy in the COVID positive abdominal organ transplant recipients significantly decreased hospitalization and death. Early outpatient intervention for COVID-19 disease in transplant patients should be considered where possible.


Subject(s)
Antibodies, Monoclonal, Humanized/administration & dosage , Antibodies, Neutralizing/administration & dosage , COVID-19 Drug Treatment , COVID-19 , Hospitalization/statistics & numerical data , SARS-CoV-2/isolation & purification , Transplant Recipients , Aged , Antibodies, Monoclonal/adverse effects , Antibodies, Monoclonal/therapeutic use , COVID-19/diagnosis , COVID-19/mortality , COVID-19 Nucleic Acid Testing , Female , Humans , Male , Middle Aged , Organ Transplantation/adverse effects , Polymerase Chain Reaction , Retrospective Studies , SARS-CoV-2/genetics
17.
Front Immunol ; 12: 690322, 2021.
Article in English | MEDLINE | ID: covidwho-1403471

ABSTRACT

A convalescent, non-severe, patient with COVID-19 was enrolled as a hyper-immune plasma voluntary donor by the Immuno-Hematology and Transfusion Unit of the Regina Elena National Cancer Institute in Rome, under the TSUNAMI national study criteria. During a nearly 6-month period (May-October 2020), the patient was closely monitored and underwent four hyperimmune plasma collections. Serum SARS-CoV-2 (anti-S + anti-N) IgG and IgM, anti-S1 IgA, and neutralizing titers (NTs) were measured. Anti-SARS-CoV-2 antibody levels steadily decreased. No correlation was found between anti-S/anti-N IgG and IgM levels and viral NT, measured by either a microneutralization test or the surrogate RBD/ACE2-binding inhibition test. Conversely, NTs directly correlated with anti-S1 IgA levels. Hyperimmune donor plasma, administered to five SARS-CoV-2 patients with persistent, severe COVID-19 symptoms, induced short-term clinical and pathological improvement. Reported data suggest that high NTs can persist longer than expected, thus widening hyperimmune plasma source, availability, and potential use. In vitro RBD/ACE2-binding inhibition test is confirmed as a convenient surrogate index for neutralizing activity and patients' follow-up, suitable for clinical settings where biosafety level 3 facilities are not available. IgA levels may correlate with serum neutralizing activity and represent a further independent index for patient evaluation.


Subject(s)
Antibodies, Neutralizing/administration & dosage , Antibodies, Viral/administration & dosage , COVID-19/therapy , SARS-CoV-2/immunology , Aged , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , Blood Donors , COVID-19/immunology , COVID-19/virology , Humans , Immunization, Passive , Immunoglobulin A/administration & dosage , Immunoglobulin A/blood , Immunoglobulin A/immunology , Male , Middle Aged , Spike Glycoprotein, Coronavirus/immunology , Time Factors , Treatment Outcome , COVID-19 Serotherapy
18.
EBioMedicine ; 71: 103544, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1363987

ABSTRACT

BACKGROUND: Several SARS-CoV-2 lineages with spike receptor binding domain (RBD) N501Y mutation have spread globally. We evaluated the impact of N501Y on neutralizing activity of COVID-19 convalescent sera and on anti-RBD IgG assays. METHODS: The susceptibility to neutralization by COVID-19 patients' convalescent sera from Hong Kong were compared between two SARS-CoV-2 isolates (B117-1/B117-2) from the α variant with N501Y and 4 non-N501Y isolates. The effect of N501Y on antibody binding was assessed. The performance of commercially-available IgG assays was determined for patients infected with N501Y variants. FINDINGS: The microneutralization antibody (MN) titers of convalescent sera from 9 recovered COVID-19 patients against B117-1 (geometric mean titer[GMT],80; 95% CI, 47-136) were similar to those against the non-N501Y viruses. However, MN titer of these serum against B117-2 (GMT, 20; 95% CI, 11-36) was statistically significantly reduced when compared with non-N501Y viruses (P < 0.01; one-way ANOVA). The difference between B117-1 and B117-2 was confirmed by testing 60 additional convalescent sera. B117-1 and B117-2 differ by only 3 amino acids (nsp2-S512Y, nsp13-K460R, spike-A1056V). Enzyme immunoassay using 272 convalescent sera showed reduced binding of anti-RBD IgG to N501Y or N501Y-E484K-K417N when compared with that of wild-type RBD (mean difference: 0.1116 and 0.5613, respectively; one-way ANOVA). Of 7 anti-N-IgG positive sera from patients infected with N501Y variants (collected 9-14 days post symptom onset), 6 (85.7%) tested negative for a commercially-available anti-S1-IgG assay. FUNDING: Richard and Carol Yu, Michael Tong, and the Government Consultancy Service (see acknowledgments for full list). INTERPRETATION: We highlighted the importance of using a panel of viruses within the same lineage to determine the impact of virus variants on neutralization. Furthermore, clinicians should be aware of the potential reduced sensitivity of anti-RBD IgG assays.


Subject(s)
COVID-19/therapy , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Adult , Aged , Antibodies, Neutralizing/administration & dosage , Antibodies, Neutralizing/immunology , Antibodies, Viral/administration & dosage , Antibodies, Viral/ultrastructure , COVID-19/genetics , COVID-19/immunology , COVID-19/virology , Female , Humans , Immunization, Passive , Male , Middle Aged , Mutation/genetics , Neutralization Tests , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/immunology , COVID-19 Serotherapy
19.
Cell Rep ; 36(10): 109679, 2021 09 07.
Article in English | MEDLINE | ID: covidwho-1363916

ABSTRACT

A wide range of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) neutralizing monoclonal antibodies (mAbs) have been reported, most of which target the spike glycoprotein. Therapeutic implementation of these antibodies has been challenged by emerging SARS-CoV-2 variants harboring mutated spike versions. Consequently, re-assessment of previously identified mAbs is of high priority. Four previously selected mAbs targeting non-overlapping epitopes are now evaluated for binding potency to mutated RBD versions, reported to mediate escape from antibody neutralization. In vitro neutralization potencies of these mAbs, and two NTD-specific mAbs, are evaluated against two frequent SARS-CoV-2 variants of concern, the B.1.1.7 Alpha and the B.1.351 Beta. Furthermore, we demonstrate therapeutic potential of three selected mAbs by treatment of K18-human angiotensin-converting enzyme 2 (hACE2) transgenic mice 2 days post-infection with each virus variant. Thus, despite the accumulation of spike mutations, the highly potent MD65 and BL6 mAbs retain their ability to bind the prevalent viral mutants, effectively protecting against B.1.1.7 and B.1.351 variants.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , SARS-CoV-2/immunology , Animals , Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal/chemistry , Antibodies, Neutralizing/administration & dosage , Antibodies, Neutralizing/chemistry , Antibody Affinity , COVID-19/therapy , COVID-19/virology , Epitopes/genetics , Epitopes/immunology , Humans , Immunization, Passive , Mice , Mice, Transgenic , Models, Molecular , Neutralization Tests , Protein Domains , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Treatment Outcome , COVID-19 Serotherapy
20.
Nat Commun ; 12(1): 5000, 2021 08 17.
Article in English | MEDLINE | ID: covidwho-1361637

ABSTRACT

The successive emergences and accelerating spread of novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) lineages and evolved resistance to some ongoing clinical therapeutics increase the risks associated with the coronavirus disease 2019 (COVID-19) pandemic. An urgent intervention for broadly effective therapies to limit the morbidity and mortality of COVID-19 and future transmission events from SARS-related coronaviruses (SARSr-CoVs) is needed. Here, we isolate and humanize an angiotensin-converting enzyme-2 (ACE2)-blocking monoclonal antibody (MAb), named h11B11, which exhibits potent inhibitory activity against SARS-CoV and circulating global SARS-CoV-2 lineages. When administered therapeutically or prophylactically in the hACE2 mouse model, h11B11 alleviates and prevents SARS-CoV-2 replication and virus-induced pathological syndromes. No significant changes in blood pressure and hematology chemistry toxicology were observed after injections of multiple high dosages of h11B11 in cynomolgus monkeys. Analysis of the structures of the h11B11/ACE2 and receptor-binding domain (RBD)/ACE2 complexes shows hindrance and epitope competition of the MAb and RBD for the receptor. Together, these results suggest h11B11 as a potential therapeutic countermeasure against SARS-CoV, SARS-CoV-2, and escape variants.


Subject(s)
Angiotensin-Converting Enzyme 2/drug effects , Angiotensin-Converting Enzyme 2/immunology , Antibodies, Neutralizing/administration & dosage , COVID-19 Drug Treatment , SARS-CoV-2/drug effects , Animals , Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , COVID-19/immunology , COVID-19/mortality , COVID-19/virology , Chlorocebus aethiops , Disease Models, Animal , Epitopes , Female , HEK293 Cells , Haplorhini , Humans , Macaca fascicularis , Male , Mice , Mice, Inbred BALB C , Pandemics , SARS-CoV-2/immunology , SARS-CoV-2/isolation & purification , Vero Cells , Virus Activation
SELECTION OF CITATIONS
SEARCH DETAIL